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Abstract 

Alon, N., Y. Caro and I. Krasikov, Bisection of trees and sequences, Discrete Mathematics 114 

(1993) 337. 

A graph G is called bisectable if it is an edge-disjoint union of two isomorphic subgraphs. We show 

that any tree T with e edges contains a bisectable subgraph with at least e - O(e/log log e) edges. We 

also show that every forest of size e, each component of which is a star, contains a bisectable 

subgraph of size at least e -O(log2 e). 

1. Introduction 

Let G be a graph with n = n(G) vertices and e = e(G) edges. The number of edges e of 

G is called the size of G. G is bisectab2e if it is an edge-disjoint union of two isomorphic 

subgraphs. 

Let B(G) be a bisectable subgraph of maximum size of G. 

The function R(G) = e(G) -e(B(G)) for general graphs G has been studied by ErdBs 

et al. [l] and independently by Alon and Krasikov (unpublished). It was shown that 

any graph of size e contains a bisectable subgraph with at least R(e2j3) edges, and that 

there are graphs of size e containing no bisectable subgraphs of size more than 

0(e2/310g e/log log e). 

Here we consider the function R(G) in two special cases; when G is a tree and when 

G is a forest, each connected component of which is a star. Some other results dealing 

with decompositions of trees into isomorphic subgraphs appear in [4] and in some of 

its references. 

2. Trees 

The first class of graphs we consider is the class of trees. 

We start with the following result of Otter [S]. 
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Lemma 2.1. The number of isomorphism types of rooted trees with n vertices is at most 

;( ?I:). 

Lemma 2.2. Let F be a forest and let q be the maximum size of a connected component of 

it. Let F’ be a tree obtained from F by inserting one additional vertex adjacent to each 

component of F. Then R(F)<44 and R(F’)<4¶. 

Proof. Split all components of F into classes, according to their isomorphism type. 

Drop out one tree from each class containing an odd number of components, and 

bisect the classes obtained in the obvious way. Since at most one tree for each 

isomorphism type is omitted, we have, by the previous lemma, 

The proof that R(F’)<4q is similar. 0 

Theorem 2.3. For any tree T with n vertices, 

On the other hand there are trees T on n vertices such that R(T)>n(log n). 

Proof. To prove the lower bound, consider the forest F consisting of the stars 

Fink 1, 51, i = 1,2, . . , t. Consider the tree T obtained from F by inserting a new vertex 

u adjacent to the centers of all stars. It is not too difficult to check that R(T) > R(log n). 

We omit the details. 

We now prove the upper bound. Fix two numbers f=(log n)ii410g log n and 

g =i log log n, where all logarithms above are in base 4. Given a tree T, produce 

a forest in it according to the following three steps: 

(i) Delete from T the minimum number of edges such that in the resulting forest 

F1 each component has at most one vertex of degree more than$ 

(ii) Consider vertices having degree more than f in F1. For each such vertex 

v consider the branches at v having more than g edges and delete the edges joining 

these branches to v. Denote the forest so obtained by Fz. 
(iii) Consider those components of F2 which do not contain a vertex of degree more 

than f whose size is more than f ‘. Delete the minimum possible number of edges 

from Fz to obtain a forest F3 having no such components. 

Observe that the total number of deleted edges does not exceed 3n/f+ n/g. Indeed, 

the number of edges deleted from Tin step (i) is at most 2n/f: (To see this, choose, 

arbitrarily, a root v of T. For each vertex u #v of degree greater than f; delete the edge 

joining it to its parent.) In step (ii) at most n/g additional edges are deleted. Also, in any 
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tree Tof size 1 TI and maximum degree d, there is a branch of size s, where c < s d CA for 

any integer c satisfying 1 -Z c ,< 1 Tl/A ; hence, at most n/f edges are deleted in step (iii). 

Now we can build the required bisection. To this end, split all components of F3 

into two classes F4 and F, such that F4 consists of all components of size less thanf’. 

By Lemma 2.2, F4 can be bisected after omitting at most 4f * edges. Similarly, each 

component of F5 can be bisected after omitting at most 4g edges. But, since each 

component in F5 has size at least f2, the total number of components in F5 does not 

exceed n/f 2. Thus, R(F,)<n4Y/f 2. 

Altogether, we get 

3n n n4g 
R(T)<f+Cl+4/*+f2<0 0 

Corollary 2.4. If G is a forest with e edges then R(G)<0 

Remark 2.5. The last proof showing that, for any tree T with e edges, R(T)< 

O(e/log log e) easily supplies a polynomial-time algorithm for producing, for any such 

T, a bisectable subgraph H of size at least e-O(e/loglog e) in it (together with an 

actual bisection of H). This is in contrast to the result in [3], which asserts that the 

decision problem ‘given a tree T, decide if R(T) =O, i.e., if T is bisectable’ is NP- 

complete. 

3. Star forests and sequences 

In this section we estimate R(G) for forests each component of which is a star. In 

this case an isomorphic decomposition has a natural interpretation as a decomposi- 

tion of a sequence of positive integers. Let us first introduce some relevant definitions. 

All sequences we consider are finite sequences of nonnegative integers. We use capital 

letters to denote our sequences, and the corresponding small letters for their elements. 

Let n=n(A) be the number of elements in a sequence A, S=S(A)=Cai. We write 

A <B if, after an appropriate ordering, n(A)=n(B) and ai <b, for all i. 

A sequence A is called bisectable if there is a sequence B and a permutation rc such 

that ai = hi + b,,i,, 1 d i < n. A sequence A is called irreducible if it does not contain 

a proper bisectable subsequence. 

Observe that a forest F consisting of vertex-disjoint stars is bisectable iff the 

sequence A, whose elements are the sizes of the corresponding components of F, is 

bisectable. Moreover, R(F) = min(S(A) - S(B)), where B ranges over all bisectable 

sequences satisfying B< A. The right-hand side of this equality can be used as 

a definition of R(A) for sequences. 

To estimate R(A), we need the following well-known result which we state without 

its simple proof. 
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Lemma 3.1. Zf 6i are reals, 1 didn, 16iI fc, and C&=0 then there is a permutation 
6 n(l), ...,dn(,,) such that z(l)=1 and \C{=l d,(i,\<c for all 16 j<n. 

Lemma 3.2. Let A be an irreducible sequence satisfying max ai/min ai < 1.5. If A can be 

partitioned into two pairwise disjoint subsequences B and C, such that n(B)=n(C)= 

in(A), S(B)=S(C)=$S(A), then A is bisectable. 

Proof. Put n = n(A) and let us index the elements of A by aO, a,, . . , a,_ 1 such that 

minai=a, and Cazi+l= Cazi. By the previous lemma, applied to the numbers 

(&-al)> (%-a,), . . ..(&-.--a,-,), we can rearrange the sequence such that 

minai=a, and I(ao-al)+...+(U,i-2-a2i_1)I~LU,/21for all 162i-l<n. 

Define 

do=?, r1 di=(-l)‘do+ i: (-l)‘-‘aj, i>l. 
j= 1 

Observe that ai = di + di- 1, where d _ 1 = d, _ 1. Indeed, this is obvious for all i > 0, 
and,fori=O,d,_,=d_,=a,-d,since~a,i+l= Cazi. Moreover, for every 1<2i< n, 

Similarly, for every 1 d 2i - 1 < n, 

d2i_1=-(ao-ual)--..-((azi-*-~azi_1)+ 52 >- 3 + 5 =o. M- 121 121 
Thus, each di is nonnegative and A is bisectable, as needed. 0 

Theorem 3.3. Let A be a sequence whose sum of elements is S. Then R(A) f 0(log2 S). 

On the other hand, there are sequences A with sum S(A) = S satisfying R(A)>Q(log S). 

Proof. The lower bound can be easily proved for the sequence defined by ai= 3’, 

O<i<n- 1. 

Given a sequence A with sum S(A)=& let us prove the upper bound. Clearly, we 

may assume that A is irreducible. Order the members of A in a nondecreasing order 

lQa,<ald...<a”_,. Choose k to be the minimal number such that ai+k > 1.5Ui for 

all i < n - k. (If there is no such k < n, choose k = n.) 

Clearly, 

an-1 

( 1 

k 

Sk>, - 

n-k-1 ai+k 

a1 
ul 

-p 1.s-k 
i=O I 

and, hence, k>Q(n/log S). By the definition of k, there exists an 1 so that 

Observe now that any sequence X of t positive integers such that 

1 +x j(x j-min xi) <(r $2 1) contains two disjoint subsequences Y and Z such that 
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S( Y)=S(Z) and n(Y)= n(Z). (This is because, by trivial counting, there are two 

distinct subsequences of r t/21 terms each with equal sums, and, by omitting the 

elements in their intersection from both, we obtain Y and Z.) Since A was assumed to 

be irreducible, we must have, by Lemma 3.2, 

k-l 

Combining this with k > R(n/log S) yields n 6 O(log’ S(A)). Since, trivially, R(A) < n, 

we conclude that R(A)< O(log’S(A)), as needed. 0 

Corollary 3.4. Every forest of size e each connected component of which is a star 

contains a bisectable subgruph of size at least e - O(log’ e). 

4. Concluding remarks and open problems 

It would be interesting to close the gaps between our upper and lower bounds in 

Theorems 2.3 and 3.3. One can consider the following natural generalization of 

Theorem 3.3. For a sequence A = aO,. . . ,a,_ 1 and an integer k we say that A is 

k-decomposable if there is a sequence B = bO, . . . ,b, _ 1 and k permutations 7c1,. . . ,rk 

such that ai = ~j”= 1 fin,(i). A repeated application of Theorem 3.3 clearly implies that 

any sequence A whose sum of elements is S contains a 2j-decomposable sequence C, 

with C < A such that S(A)- S(C) = 0(2jlog2 S). When trying to study the case of k- 

decomposable sequences, one naturally obtains the problem of determining or estima- 

ting the function fk(n) defined as follows. For each k32, fk(n) is the maximum 

cardinality of a set A ;.; integers not exceeding n, such that there are no k pairwise 

disjoint subsets Al ,...,L, fAsatisfyingIA,I=...=IA,I andS(A,)=...=S(A,). Using 

the well-known results of Erdos and Rado [2] on sunflowers one can easily prove that 

for every fixed k, fk(n) d 0(log2 (n)). Moreover, the validity of the ErdBs-Rado conjec- 

ture would imply fk(n)<O(log n). We have been informed that D. Coppersmith, 

motivated by a completely different problem, has considered recently a similar 

question and also noticed its connection to the ErdBs-Rado results, 
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